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We investigate the magnetoconductance~MC! in the variable-range hopping regime, caused by quantum
interference effects in three dimensions. We find that, in the absence of spin-orbit scattering, there is an
increase in the localization length, producing a large positive MC. By contrast, with spin-orbit scattering
present, there is no change in the localization length, and only a small increase in the overall tunneling
amplitude as in two dimensions. Orientational effects, of the sample with respect to an external magnetic field,
can be considered in three dimensions, and we find the magnetoconductance anisotropy depends critically on
the number of dominant hops in the sample and the magnetic field intensity. If a single hop~or a few!
dominates the conductivity of the sample, this leads to a characteristic orientational ‘‘fingerprint’’ for the MC
anisotropy that could be probed experimentally. Samples probed to date, however, exhibit a conductance
dominated by many hops, and thus averaging over critical hop orientations renders the bulk sample isotropic.
Anisotropy appears, however, for thin films, when the length of the hop is comparable to the thickness. The
hops are then restricted to align with the sample plane, leading to different MC behaviors parallel and perpen-
dicular to it, even after averaging over many hops. We predict, on the basis of the Nguyen-Spivak-Shklovskii
model, the variations of such anisotropy with both the hop size and the magnetic field strength. An orienta-
tional bias of dominant hops produced by strong electric fields is suggested as an interesting probe of anisot-
ropy effects due to interference mechanisms in the variable-range hopping regime.

I. INTRODUCTION

Striking quantum interference~QI! effects have been ob-
served in experiments oninsulatingmaterials.1–4 These ob-
servations are of particular interest, as they point to quantum
coherence phenomena for strongly localized electrons, where
naively they may not have been expected to occur over
length scales appreciably larger than the localization length
j. A theoretical explanation was first proposed by Nguyen,
Spivak, and Shklovskii5 ~NSS! in the context of Mott vari-
able range hopping6 ~VRH!: Phase coherence is maintained
over the long distances between phonon-assisted tunneling
events, which grow with decreasing temperatureT as
exp(T0 /T)

1/(D11) in D spatial dimensions. The resulting co-
herence length can be quite large~typically of the order of
20250j). In this work, we consider the three-dimensional
NSS model and focus on the dependence of the conductance
and its fluctuations on the relative orientations of the mag-
netic field and the dominant hop.

The initial indications of QI came from observations of a
strong positive magnetoconductance~MC! in materials that
exhibit VRH behavior.7 In a single impurity picture, the ac-
tion of the magnetic field is to further confine electrons al-
ready localized around the impurity. This would result in a

negative MC, which is not the case in experiments for weak
magnetic fields. Further evidence is provided by the orbital
nature of the MC~Ref. 2! observed in InO films of varying
thickness. While experiments show an isotropic MC for thick
samples, anisotropy sets in when the film thickness is close
to the Mott hopping length. Such anisotropy precludes expla-
nations in terms of scattering of electron spin by magnetic
impurities,8 which are necessarily isotropic with respect to
the field direction, pointing instead to interference effects
due to the electron orbits. Finally, in a careful set of experi-
ments, Orlov and Savchenko1 and Milliken and Ovadyahu3

demonstrate the presence of reproducible conductance fluc-
tuations or magnetofingerprints, generally regarded as a clear
signature of QI effects.

The NSS model considers the QI between the many vir-
tual paths that the electron can take while tunneling under
the barrier between two distant impurity centers. In the tun-
neling process, the hopping electrons with energies near the
Fermi level encounter impurities with energies outside the
Mott energy strip. These impurities are considered as the
source of elastic scattering events under the barrier. Since the
contribution of each virtual path~tunneling through a barrier!
is exponentially damped by the distance it covers, it is suffi-
cient to ignore backscattering and focus on the~directed!
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paths that only undergo forward scattering between the initial
and final impurities.

The initial numerical studies of the NSS model~on rela-
tively small systems! ~Ref. 5! indeed confirmed that it yields
the correct sign for the MC. Subsequently, Sivan, Entin-
Wohlman, and Imry9 provided a theoretical analysis that
agrees with much of the early NSS results. The critical hop is
identified from the condition of producing a percolating net-
work of random resistors,10 while the probability distribution
for individual hops is calculated by assuming that the con-
tributing virtual paths are uncorrelated. The latter assump-
tion, which we shall refer to as the independent path approxi-
mation ~IPA!, was shown to be invalid by Shapir and
Wang,11 since, in low dimensions, the paths must intersect at
some scattering sites. Eventually, the correct form of the
hopping probability distribution was calculated by Medina
et al.,12 by incorporating the correlations between the virtual
paths and using logarithmic averaging. The analytical results,
confirmed by extensive numerical simulations, indicate that
the positive MC in this model actually corresponds to an
increase in the localization length with the magnetic field in
the absence of spin-orbit~SO! scattering. This prediction is
supported, at least qualitatively, by recent experiments on
InO Ref. 2 and YSi.13While the IPA scheme cannot produce
a change in the localization length, an alternative approach to
strong localization, based on random matrix theory,13 also
produces such an effect. The latter, which is exact only for
quasi-one-dimensional systems, predicts a doubling of the
localization length.

There are conflicting theoretical and experimental obser-
vations in the presence of spin-orbit scattering. The first ex-
perimental study on InO~Ref. 14! showed MC behavior re-
sembling that of the weak localization regime; i.e., a positive
MC for low fields, changing to negative at higher fields. On
the other hand, more recent experiments13 on YSi show
negative MC for all applied fields. On the theoretical side,
both the IPA scheme,15 and the correct accounting of
correlations,16 yield a positive MC without changes in the
localization length.~In fact the IPA results for MC are exact
in the presence of strong SO.! Finally, the random matrix13

approach finds a negative MC caused by a universal decrease
of the localization length by a factor of two. These issues are
discussed in greater detail in Ref. 17, and will not be dis-
cussed further in the present work.

In this work we study the NSS model in three dimensions,
with and without spin-orbit scattering. An important new fea-
ture is that we must now take into account the relative direc-
tions of the magnetic field and the dominant hop. This issue
is most relevant experimentally for samples that are small
enough~or at such low temperatures! to include only a single
dominant hop. By measuring the MC anisotropy as a func-
tion of the direction of the magnetic field, it is possible to
locate the orientation of this dominant hop. Field depen-
dences parallel and perpendicular to this orientation can then
be used to further test the current models of coherence in the
localized regime. There is, however, a certain amount of in-
ternal averaging when the conductance is dominated by sev-
eral hops. Some insight about the nature of the hops can then
be obtained by examining the MC anisotropy of thin films, as
a function of their thickness and orientation to the magnetic
field.

II. THE NSS MODEL

Low-temperature conduction in the strongly localized re-
gime is dominated by thermal hopping. At the lowest tem-
peratures localized electrons lack enough thermal energy to
hop to neighboring sites. On the other hand, electrons cannot
wander too far away from their localization point due to the
exponential decay of the wave function. The balance of these
competing tendencies results in an optimal hopping length
and leads to Mott’s law for VRH.6 Each of these hops may
be represented by an effective resistor~hopping probability!
in a network that can then be solved for the macroscopic
conductance of the sample. The picture of the
Miller-Abrahams18 ~MA ! network is central to the under-
standing of hopping conduction. The effective resistance of
the MA network was first estimated by Ambegaokar, Halp-
erin, and Langer~AHL !,10 and Shklovskii and Efros,19 using
a percolation argument: Due to the exponentially large val-
ues of the resistors in the network, the macroscopic conduc-
tance is dominated by a single bottleneck resistor on a per-
colating network.~We shall later discuss the modifications
due to multiple hops.! This simple argument provides a pow-
erful tool, since it is then sufficient to determine the varia-
tions of a single hop with various external~applied fields! or
internal ~doping, correlation effects, anisotropy! physical
parameters.20

The model proposed by NSS examines QI effects for the
dominating hop. Due to the long distance of the hop, typi-
cally R;j(T0 /T)

1/(D11);(20250)j, electrons scatter off
many impurities on route to the final site. While at the end of
the process there is some loss of phase coherence~due to
inelastic scattering by phonons!, the intermediate scattering
is elastic. To study QI processes for the hop, the NSS model
places the impurities on the sites of a regular lattice, e.g., the
cubic lattice in Fig. 1. The interference effects are maximized
if the initial and final sites for the hop are chosen at diago-
nally opposite end points. Electrons can then follow many
different virtual paths from the initial to the final site. The
overall tunneling amplitude is computed by summing all

FIG. 1. The NSS model on a three-dimensional diagonal lattice.
Impurities are located on the sites.
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~virtual! paths between the two points, each contributing an
appropriate quantum mechanical complex weight. These
weights are obtained from an Anderson tight-binding Hamil-
tonian

H5(
i

e iai
†ai1(̂

i j &
Vi j ai

†aj , ~1!

wheree i are the impurity site energies, andVi j represent the
nearest-neighbor couplings or transfer terms. NSS further
simplify the problem by choosing site energies distributed
according to

e i5H 1W with probability p,

2W with probability ~12p!,

and a transfer term

Vi j5HV if i , j are nearest neighbors,

0 otherwise.

We shall henceforth setp51/2. To describe strong localiza-
tion, the Anderson parameter is taken to be much smaller
than 1 (V/W!1). This corresponds physically to a strongly
disordered sample where the width of the bands (;2V) cen-
tered at energies6W is much smaller than their energy dif-
ference to the Fermi level.

The effective hopping matrix element can be computed
using a locator expansion.17,21 The overlap amplitude
~Green’s function! between the initial and final sites is given
by

^FuG~E!uC1&5(
G

)
iG

VeiAG

EF2e iG
, ~2!

where uF& represents the state with a localized electron at
the initial site, anduC1& the state with a localized electron at
the final site;EF is the Fermi energy, which will be set to
zero, andAG is the phase acquired by the electron due to the
magnetic field on pathG. In principle, the sum is overall
pathsG between the initial and final sites~including back-
scattering!. However, forV/W!1, only the shortest~forward
scattering! paths need to be included.~For a more detailed
discussion and justification on this point, using an analogy
with high-temperature expansions in the Ising model, see
Refs. 17 and 22!. Neglecting backscattering, we obtain for
paths of lengtht,

^ i uG~E!u f &5S VWD tJ~ t !, J~ t !5 (
G8

directed

)
iG8

h iG8
eiAG8.

~3!

The sum is now restricted to directed pathsG8, and
h i5sgn(e i)561. The interference information is captured
in the functionJ(t), while the factor (V/W) t is the leading
contribution to the expected exponential decay of the local-
ized wave function.

The transfer matrix approach provides an efficient nu-
merical algorithm for computingJ(t). As described in Ref.
22, this method allows summing over the exponentially large
number of paths in polynomial time~typically ;tD for D
dimensions!. The results of extensive analytical and numeri-

cal studies~mostly inD52) based on this method are dis-
cussed in Ref. 17. Briefly, the probability distribution for
J(t) is quite broad. Itslogarithm is a universal function with
a mean proportional tot, and variance growing ast2v, with
v depending on the dimensionD. Since the mean and vari-
ance of the~log! distribution are independent,two param-
eters are necessary to describe the tunneling probability.
High moments of the distribution are, however, nonuniver-
sal, and dominated by exceptionally good realizations.23

In discussing the change in the tunneling probability in a
magnetic fieldB, NSS introduced5 the important concept of
the effective ‘‘cigar’’-shaped area through which the field
penetrates. Naively, typical directed paths execute a random
walk in the transverse direction, so that a path of lengtht
wanders away a distance of the order oft1/2. As shown in
Fig. 2 the area presented to a magnetic field perpendicular to
such paths thus grows asA'}t3t1/2}t3/2, and the MC is
expected to be a function of the fluxBt3/2. This is indeed the
case in the absence of randomness, where the exact response
of the sum over directed paths inD52 ~Ref. 12! initially
decreases asB2t3. The above argument does not work in the
presence of randomness, where typical paths have superdif-
fusive transverse fluctuations that grow astz with z.1/2.22

However, the scaling functionsare not simply modified to
depend onBt11z. In the presence of spin-orbit scattering, the
behavior is qualitatively similar to the pure case: there is a
positive MC, initially scaling asB2t3, which saturates at a
finite (t independent! value. By contrast, in the absence of
SO, the~positive! MC grows unbounded witht. This is be-
cause the effect of the magnetic field is a~nonuniversal!
increase in the localization lengthj, initially scaling as

FIG. 2. The figure depicts how effective areas that arise from
scaling can be derived from random walk arguments.
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B1/2. The appropriate scaling variable in this case isBt2,
although numerically one finds a small preasymptotic regime
with Bt3/2 scaling. There is currently no satisfactory expla-
nation of the crossovers in the absence of SO.

The replica arguments17 suggest that the same asymptotic
behavior for the MC should be observed inD53, as long as
the magnetic field is perpendicular to the hopping direction.
However, it is also possible to consider fields parallel to the
hop. The transverse area presented to the magnetic field by
typical diffusive paths ~see Fig. 2! now grows asAi
}t1/23t1/2, suggestingBit as the appropriate scaling argu-
ment. This simple argument was first presented in Ref. 24,
along with preliminary numerical support. The anisotropic
field dependence was verified recently by Lin and Nori25 in
the IPA approach. In the next section we present detailed
numerical results pertaining to the anisotropy of MC in
D53.

III. NUMERICAL RESULTS FOR A SINGLE HOP

As the distribution of the tunneling amplitudeJ(t) in Eq.
~3! is broad, care in averaging is quite important. We typi-
cally averaged the logarithm of the transition probability~log
conductance! over 2000 realizations of randomness. The
equivalence of the logarithmic averaging used here, and the
percolation analysis~at least in the weak-field limit! has been
discussed in Ref. 9, where the authors emphasize that aver-
aging should only be done on the critical subnetwork. The
transfer matrix method allows us to examine systems of size
t5600 in the wedge geometry. Furthermore, after studying
the dependence of the computed amplitudes on the lateral
dimension, we also used a bar geometry with dimensions
150032003200. This is reasonable if the important paths
have transverse fluctuations smaller than 200, which was
found to be the case. As discussed before, our main focus is
on the different responses for fields parallel and perpendicu-
lar to the hop direction. We discuss separately the MC with
and without SO scattering. The results in the presence of SO
are easily interpreted and offer no fundamental surprises.

However, most of our numerical results in the absence of SO
pertain to a preasymptotic regime for which we have no sat-
isfactory theoretical understanding, but which are most prob-
ably of experimental importance.

A. MC without spin-orbit scattering

Figure 3 shows the MC and its fluctuations for a magnetic
field parallel to the hopping direction. For the largest values
of B, it is clear that ln@uJ(t,B)u/uJ(t,0)u#2 grows linearly with
the lengtht of the hop. This is indicative of an exponential
correction to the conductance due to an increased localiza-
tion length in the magnetic field. It is only after about
t5400 that reasonable linearity is achieved, so rather large
systems must be examined to study the true asymptotic limit.
A similar positive MC ~and increased localization length!
behavior is also observed for the perpendicular field orienta-
tion. Concurrently, there is a reduction in the magnitude of
the fluctuations in the tunneling probability~inset of Fig. 3!,
and there appear to be strong correlations between changes
in the average of the log conductance and its fluctuations.
This is also the case inD52, where a replica argument
suggests that these two quantities~indeed the whole prob-
ability distribution! are governed by a single parameter.17,22

Most of the data in Fig. 3 pertain to a preasymptotic re-
gime, before the change in localization length becomes ap-
parent. Since the length of the hop in most experiments is
only of the order of~20–50!j, it is useful to explore this
regime carefully. In Fig. 4 we present an attempt to collapse
the numerical data in this regime for different values ofB
and t. The collapse for the parallel field orientation is dem-
onstrated in Fig. 4~a!; the maximum hopping length in this
graph is t5600, while fields go up to 0.1 flux quanta per
plaquette; all in the preasymptotic regime. The choice of the
scaling variableBit is consistent with the flux through a
section of the NSS ‘‘cigar’’ perpendicular to the hop direc-
tion (Ai}At3At). Two regimes are apparent in Fig. 4~a!: ~i!
for the lowest fields (531025f0 per plaquette! and sizes
(t5102100) there is a linear increase with the variable

FIG. 3. Log conductance as a
function of system sizet for fields
parallel to the hop direction. The
change in the slope with the field
indicates an exponential correc-
tion to the conductance~change in
the localization length!. A straight
line is drawn as a guide to the eye.
The inset shows a reduction of
fluctuations with the field. The
power-law dependence on the
hopping length is also indicated.
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Bt. ~ii ! For intermediate fields and hop sizes, when approxi-
mately one flux quantum penetrates the NSS ‘‘cigar,’’ there is
a nontrivial apparent exponent. The behavior in these re-
gimes is summarized by

K lnuJ~ t,Bi!u
uJ~ t,0!u

2L 5H 1.5Bi for Bit<1

~a1Bit !
a1 for Bit.1,

~4!

wherea150.3860.02.
The corresponding collapse for fields in the perpendicular

orientation is presented in Fig. 4~b!. In this case the appro-
priate scaling variable isBt3/2, again consistent with the flux
through the NSS ‘‘cigar.’’ Once more, two different regimes
are identified, with

K lnuJ~ t,B'!u
uJ~ t,0!u

2L 5H 0.6B't
3/2 for B't

3/2<1

~b1B't
3/2!a2 for B't

3/2.1,
~5!

and a250.2560.02. We again emphasize that the second
regime above is still preasymptotic. For larger systems
(200320031500) the log conductance crosses over to a re-

gime where presumably the relevant scaling variable is
Bt2.17 The latter scaling suggests that the magnetic length is
the relevant length scale.26 We were not able to clearly ac-
cess this regime as cumbersomely large systems must be
simulated.

It is interesting to compute, on the basis of the above
results, the anisotropy in conductance of a single critical re-
sistor. We shall define an anisotropy parameter,

b~B,t !5
^ lnuJ~ t,B'5B!u22 lnuJ~ t,0!u2&
^ lnuJ~ t,Bi5B!u22 lnuJ~ t,0!u2&

,

thus making contact with the original experimental definition
of Ref. 2. Depending on the strength of the magnetic field,
this anisotropy shows different scaling forms: For the small-
est fields, such thatBt3/2,1,

b5
0.6Bt3/2

1.5Bt
50.4t1/2.

In this range the anisotropy is field independent, but changes
with temperature sincet5j(T0 /T)

1/4. There is an interme-
diate regime whereBt3/2.1 while Bt,1, and

FIG. 4. The collapse of the log conductance
data with the appropriate scaling variables~a!
Bt in the case the field is parallel to the hop and
~b! Bt3/2 for fields perpendicular to the hop direc-
tion. The scaling variable tells about the relevant
area threaded by the field.
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b}Ba221t1.5a221,

which depends on bothB and t. Finally, for Bt.1,

b}Ba22a1t1.5a22a1,

which, using the numerically estimated values, is approxi-
mately independent oft, and has a weak field dependence as
b}1/B0.13. Thus anisotropy is reduced when the field in-
creases as shown in Fig. 5. Qualitatively similar behavior is
observed in InO samples for sufficiently high fields in Ref.
27.

B. MC with spin-orbit scattering

When spin-orbit active impurities~doping with heavy el-
ements! are taken into account, the NSS model must be gen-
eralized to include scattering of the spins. The tight-binding
Hamiltonian is now modified to

H5(
i ,s

e iai ,s
† ai ,s1 (

^ i j &,ss8
Vi j ,ss8ai ,s

† aj ,s8, ~6!

wheres indicates the electron spin. The constant nearest-
neighbor hopping elementsV in Eq. ~1! are no longer diag-
onal in spin space. Instead, each is multiplied byUi j , a
randomly chosen SU~2! matrix that describes the spin rota-
tion due to strong SO scatterers on each bond.15,28 Equation
~2! for the overlap of wave functions at the two end points
must now include the initial and final spins, and has the
locator expansion

^ isuG~E!u fs8&5(
G

)
iG

VeiAGU

Ef2e iG
. ~7!

Each bond along the path contributes a random spin rotation
U, and a phase factorAG due to the magnetic field, resulting
in

A5^ isuG~0!u fs8&5W~V/W! tJ~ t !,

with J~ t !5(
G8

)
iG8

h ie
iAG8U. ~8!

FIG. 5. Field dependencies for parallel and
perpendicular field directions whenBt3/2.1 and
for a single critical resistor. The numbers indi-
cated correspond to the number of flux quanta
piercing the elementary plaquette of our lattice
model.

FIG. 6. Magnetoconductance in the presence
of spin-orbit scattering. The relevant log conduc-
tance is no longer linear int for large hopping
lengths, indicative of no changes in the localiza-
tion length due to the field. Each curve is labeled
by the number of flux quanta piercing the el-
ementary plaquette.
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After averaging over the initial spin, and summing over the
final spin, the tunneling probability is

T5
1

2
tr~A†A!5W2~V/W!2tI ~ t !,

with I ~ t !5
1

2
tr~J†J!. ~9!

For a three-dimensional lattice we studied numerically the
statistical properties ofI (t). Using a transfer matrix we
evolve paths of lengtht5600 in the wedge geometry, aver-
aging over 2000 realizations of randomness. As in the previ-
ous section, we also used the bar geometry to computeI (t)
for systems of size 200320031500. We checked the bar-
geometry results for crossover effects~because of the smaller
lateral sizes! and confirmed that their behavior is effectively
three dimensional. The numerical results are shown in Fig. 6,
and have the same qualitative features as in two dimensions:
Unlike in the absence of SO, there is no linear increase of
D lnISO(B,t) with system sizet, and the MC saturates to a

field-dependent value for sufficiently long hops. The scale of
fluctuations in ~the logarithm of! I (t) is not significantly
modified by theB field. As in D52, turning on the SO
scattering from zero, thus switching from an orthogonal to a
symplectic Hamiltonian, is accompanied by an increase in
the zero-field conductance, and a concomitant reduction in
conductance fluctuations.

Figure 7 demonstrates the collapse of the MC data for
fields both parallel and perpendicular to the hopping direc-
tion. For fields parallel to the hopping direction the appropri-
ate scaling parameter is againBit, corresponding to the flux
through the areaAi}(At)2. The scaling function has the
form

^ lnI ~ t,Bi!2 lnI ~ t,0!&5H 0.4Bi
2t2 if Bit,1

C'0.2 if Bit.1.
~10!

For fields in the perpendicular orientation, the appropriate
area isA'}t3/2 ~see Fig. 2!, leading to a scaling function

FIG. 7. Collapse of the MC data in the pres-
ence of SO scattering. The MC is governed by
the areas~a! (j1/2t1/2)2 for fields parallel to a
single critical hop and~b! j1/2t3/2 for fields per-
pendicular to the hop direction.
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^ lnI ~ t,B'!2 lnI ~ t,0!&5H 0.1B'
2 t3 if B't

3/2,1

C'0.2 if B't
3/2.1.

~11!

The saturation value, when one flux quantum threads the
appropriate area, is roughly the same in the two cases.

The anisotropy parameter in the presence of SO is

b5H 0.25t if Bt3/2,1

1 if Bt.1,

with a small crossover region betweenBt3/2;1 andBt;1.
We thus obtain a hopping-size-dependent anisotropy~which
might show up as a temperature-dependent anisotropy! for
low fields. For higher fields, anisotropy in the presence of
SO scattering disappears as the field is increased beyond a
flux quantum through the smaller of the typical areas found
above. In order to properly compare with experiments, one
must average over different magnetic field orientations as
discussed in the next section.

The MC in the presence of SO can be explained by a
replica analysis. After averaging over the impurity potential
e i56W, the moment̂ I (B,t)n& is obtained as a sum over
n paired paths. The pairings can involve paths taken from
J andJ†; the contributions from the magnetic vector poten-
tial cancel for such ‘‘neutral’’ pairs, which do not contribute
to the MC. It is also possible to construct pairs with both
paths taken from eitherJ or J†; such ‘‘charged’’ paths are
responsible for magnetic response. An interesting feature of
averaging over strong SO scatterers@the matricesU in Eq.
~8!# is that the charged and neutral paths become completely
decoupled and can be treated independently.17 Thus the MC
with SO is ~rather fortuitously! calculated exactly by IPA:
there is no change in the localization length, and only a con-
stant increase in the tunneling amplitude. Recently Lin and
Nori25 computed the field dependencies in a scheme that is
equivalent to IPA in two and three dimensions.~The equiva-
lence to IPA can be readily recognized from the equality of
the moments of the ‘‘conductance’’ to those of a Gaussian
obtained in Ref. 25.! In the small field limit Lin and Nori
confirm exactly the scaling variables derived by us24 here,
for the two field orientations. Another notable feature of the
data is theB2 dependence for small fields, as expected in the
IPA approach.9

IV. AVERAGING OVER MANY HOPS

So far we focused on the response of a single hop to a
magnetic field. However, the percolation arguments10,19 for
the Miller-Abrahams network lead to the conclusion that
critical resistors dominate only over a correlation lengthl .
Starting from the properties of a percolation cluster near the
threshold it is concluded20 that a single hop is responsible for
the overall conductivity only for length scales up to

l ;jS T0T D ~n11!/~D11!

, ~12!

wheren is the exponent for the divergence of the correlation
length close to the percolation threshold. The macroscopic
system is then built by superposing many blocks of length
l . Therefore, in general, many critical hops contribute to the
conductivity of a large sample. In Eq.~12! the variable

T0 /T can be regarded as a measure of disorder strength; it
increases when the density of states at the Fermi level, or the
localization length, decreases. As disorder increases, the vol-
ume dominated by the critical NSS resistor gets larger.

For samples of sizeL@l , many hops contribute to the
conductivity, and the overall MC must be calculated from
their averageresponse. Using the experimentally reported2

data, we can estimatel : For samples of thicknessd5100
Å and hopping lengtht'(324)d, one obtainsl '1000 Å.
Although this length is large compared to the sample thick-
ness, it is still very small in comparison to the sample planar
dimensions (1036 mm for the experiments in Ref. 2!. Many
hops thus influence the conductance of these samples, each
with a presumably different orientation with respect to the
magnetic field. In the following paragraphs we shall perform
an average over the directions of the NSS cigar-shaped re-
gion with respect to the magnetic field. We shall assume that
the electric field is sufficiently weak so that the relative ori-
entations of the hops are still randomly distributed in
space.18,29We expect that for thick samples~as compared to
the hopping lengtht) the averaging over all possible direc-
tions of the hop removes the anisotropy in MC, as seen in
experiments. On the other hand, for thin samples such that
d<t, the restricted averaging over effectively two-
dimensional hops should lead to significant field anisotropy.
Such thickness-dependent anisotropy is indeed observed in
the experiments of Faran and Ovadyahu,2 and those of Orlov
and Savchenko.1,7

We shall assume that the appropriate cigar-shaped region
for calculating magnetic interference phenomena is an ellip-
soid of revolution as depicted in Fig. 8. The major and minor
axes of the ellipsoid are denoted byb and a, respectively.
Following NSS, 2b[t is the length of the dominant hop,
while a5Atj is a typical diffusive distance in the transverse
direction. Consider a magnetic fieldB at an angleu t with
respect to the major axis. We take the relevant magnetic flux
to be that which penetrates the projection of the ellipsoid
onto a plane perpendicular to theB field, as indicated in Fig.
8. This projection is an ellipse of minor axisa, and with a

FIG. 8. Angle convention used to perform averages over critical
hop directions. The magnetic field is along thez axis making an
angleu t with the principal axis of the ellipsoid containing dominant
paths. The relevant magnetic flux penetrates through the largest
cross section of the ellipsoid perpendicular to the magnetic field,
i.e., an ellipse of minor axisa and major axisc.
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major axis of lengthc5Aa2cos2ut1b2sin2ut. In previous sec-
tions we demonstrated that in the weaker field regimes
D lnuJ(B,t)u2}^uFug&, whereF is the appropriate flux. In the
presence of SO,g52 as justified by IPA, whileg51 in the
absence of SO from the numerical results. In the following,
we shall focus ong52, which has a better justification, and
for which it is easier to compute the average,

^F2&5^~pacB!2&

5p2B2a2@b22~b22a2!^cos2u t&#. ~13!

In performing the average over hop orientationsu t , we
distinguish between the following regimes:

~i! The behavior of samples of thicknessd@t is effec-
tively three dimensional. All orientationsu t are equally
likely ~in low voltage bias!, and^cos2ut&51/3. The averaged
response is isotropic and depends upon

^F2&5
B2p2a2

3
~2b21a2!. ~14!

The characteristicB2 dependence is a signature of the IPA,
and is also observed experimentally for small fields. In fact,
the flux through a typical interference region in Ref. 2 is of
the order of 0.5hc/e, which corresponds to the regime
Bt3/2,1.

~ii ! For a!d.t, the range of orientations of the cigar is
limited by the finite thickness, leading to MC anisotropy.
Consider a magnetic field at an anglea with respect to the
plane of the sample. We shall indicate the orientation of the
major axis of the ellipsoid by a polar angleu ~with respect to
the normal to the sample!, and an azimuthal anglef. Be-
cause of the finite thickness, the range of cosu is limited to
the interval @2d/2b,1d/2b#, and allowed angles in this
range are weighted by

p~cosu!5H 2b/d24b2ucosuu/d2 if ucosuu,d/2b

0 if ucosuu.d/2b.
~15!

The relative angle between the field and the major axis of the
ellipsoid is obtained from

cosu t5cosa sinu cosf1sina cosu. ~16!

Since all azimuthal angles are possible^cosf&50, while
^cos2f&51/2; and from Eq.~15! ^cos2u&5d2/8b2. Thus, we
finally arrive at

^cos2u t&5
d2

8b2
1
cos2a

2 S 12
3d2

16b2D , ~17!

which describes the MC anisotropy, when substituted in Eq.
~13!.

~iii ! Another limit that is easily accessible is ford.a.
Now all the ellipsoids lie in the plane, and cosu50, leading
to ^cos2ut&5cos2a/2. From Eq.~13! we then obtain

^F2&5
B2p2a2

2
@2b22~b22a2!cos2a#. ~18!

This particular limit is plotted in Fig. 9, and can be compared
to experimental data for the angular dependence of MC~at
fixed temperature and field strength!. The parameters
a5Atj and 2b5t in this figure are chosen to correspond
with those reported in Ref. 2. The general form of the curve

agrees qualitatively with the experimental data. Another per-
tinent comment concerns the experimental data of Laiko
et al.:7 they compare results for fields parallel and perpen-
dicular to the current direction~while the field is in the plane
of the sample!. On averaging over hop directions, the MC for
these configurations should be identical, in agreement with
experiments, except for very disordered samples wherel is
so large that averaging is not appropriate.

~iv! Finally for d,a, the NSS cigar is flattened into a
pancake and is no longer ellipsoidal. The behavior is gener-
ally two dimensional, withF5pab3Bsina. This formula
breaks down only at very small angles such thata<d/b, for
which ^F2&'(Bpda)2/2.

Clearly, the general tendency is that as temperature is re-
duced~hence 2b5t is increased!, the ratiod/t gets smaller.
As indicated by the above sequence, this leads to more and
more pronounced effects in the MC anisotropy. This is in-
deed consistent with the experimental observations. In prin-
ciple, the temperature dependence of this increase could be
measured experimentally and compared to the above theo-
retical formulas.

V. DISCUSSION

In this paper we studied the NSS model for quantum in-
terference effects of a tunneling electron inD53. The three-
dimensional geometry allows us to consider the relative ori-
entations of the hop and the magnetic field. The effect of
both spin-orbit active and inactive impurities were taken into
account. The results indicate that, in the absence of SO im-
purities, there is positive MC due to an increase in the local-
ization length for fields both parallel and perpendicular to the
hop direction. Furthermore, the MC data for different fields
collapses onto universal curves using the scaling variables
B't

3/2, andBit for the two orientations. This implies that, at
least in the low-field regime, crossover effects are controlled
by the flux penetrating an NSS cigar whose transverse size
grows diffusively~asAt).

In the presence of SO impurities, the numerical results
again indicate a positive MC, but as in two dimensions, no

FIG. 9. Theoretical curve computed from Eq.~18!. The experi-
mental data correspond toj585 Å, t5280 Å, and sample thickness
d5250 Å. Notice how the curve falls towardsa50 ~parallel to
sample!, closely resembling the experimental data of Ref. 2.
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change in the localization length is observed. No reduction in
the fluctuations is obtained in agreement with the replica
arguments.17 The results in this case are the same as those
obtained from an independent path approximation. The MC
grows initially asB2 for both parallel and perpendicular ori-
entations as expected. Its anisotropy disappears for large
enough fields as the MC saturates to roughly the same con-
stant in both directions. This could be checked experimen-
tally in the thin-film limit (d,t) for samples doped with
heavy elements.

The most spectacular manifestation of these results is the
possibility of observingbulk MC anisotropy, when the
sample is small enough@or the characteristic length
l 5j(T0 /T)

(n11)/(D11) is large enough# that only a single
hop ~or just a few! dominates the macroscopic conductance.
The sample will then exhibit a ‘‘fingerprint’’ in its MC an-
isotropy, and the random orientation of the critical hop can
be determined by bulk anisotropy measurements.~It is pos-
sible that this phenomenon explains why the experiments of
Laiko et al.7 go from isotropic to anisotropic behavior as
disorder is increased.30! Large values forl may be achieved
by either choosing samples with lower density of states at the
Fermi level, or largert/j. Other manifestations of thedisor-
der length scalel ~including bulk MC anisotropy! may oc-
cur under strong voltage bias,29 if the electric field reorients
the critical hops; constraining the average over hop orienta-
tions to within a cone.

However, the conductance of most samples studied in the

literature1–4 with L@l are governed by many hops. Our
estimate ofl based on published experimental data2 indi-
cates that it is much smaller than typical sample planar di-
mensions. Thus, averaging over many hop orientations is in-
evitable, washing out the predicted anisotropy fingerprint of
a single or a few hops. Nevertheless, anisotropic behavior is
still expected for sufficiently thin samples~or at low tem-
peratures!. This is because when the length of the cigar be-
comes comparable or larger than sample thickness (t.d),
the hops are forced to lie mostly parallel to the sample plane.
This restriction on hop orientations then leads to an MC
anisotropy that becomes more and more pronounced upon
lowering temperature. Appearance of such anisotropy in thin
films has already been observed in insulating InO samples.27

In principle, the variations of anisotropy with temperature
can be measured accurately and compared to the formulas
derived in the previous section. Measurements of anisotropy
can thus provide an additional experimental tool for tests of
quantum interference models.
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Éksp. Teor. Fiz.89, 11 ~1985! @Sov. Phys. JETP62, 1021
~1985!#.

6N. F. Mott, J. Non-Cryst. Solids1, 1 ~1968!.
7E. I. Laiko, A. O. Orlov, A. K. Savchenko, E. A. Il’ichev, and E.
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