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PACS. 72.20.-i – Conductivity phenomena in semiconductors and insulators.

PACS. 73.50.Dn – Low-field transport and mobility; piezoresistance.

PACS. 74.40.+k – Fluctuations (noise, chaos, nonequilibrium superconductivity, localization,
etc.).

Abstract. – We explore the mesoscopic conductance fluctuations in the insulating regime
within the Nguyen, Spivak, and Shklovskii model. We find that fluctuations of the log-
conductance are persistent above the decorrelation field Bc in the insulating regime. Using
the replica approach, we derive the field coupling and fluctuations in terms of “cooperon” and
“diffuson” analogs and determine new corrections to temperature dependencies for small ∆B.
We also analyze the ergodicity of fluctuations in the log-conductance and its scaling proper-
ties, and discuss the asymptotic validity of the usual criterion involving the commutability of
disorder and field fluctuation averages.

Mesoscopic quantum effects, in the deep insulating regime (DIR), have been amply ob-
served in a variety of materials [1–4]. The DIR is defined as that regime where the localization
length is the smallest scale compared to the elastic mean free path and hopping lengths, i.e.
ξ < � < t, respectively [5]. Coherence effects are possible in this regime because phase-
breaking events occur at the hopping length [6], which is larger than �. The most striking sig-
natures of quantum interference in disordered insulators are the classic magneto-fingerprints,
or reproducible fluctuations in the conductance with magnetic field, and a low-field positive
magneto-conductance.

An important property of mesoscopic conductance fluctuations in the metallic range is their
ergodicity. Ergodicity, in the sense of Lee and Stone [7] (LS) is defined as the equivalence of
sample-to-sample fluctuations and fluctuations with respect to field (or energy) in a single sam-
ple. More rigorously, given a physical quantity F (H, B) depending on the disordered Hamilto-
nian H and magnetic field B, one casts the ergodicity condition as [F (H, B) − 〈F (H, B)〉]2 → 0
[8] and simultaneously F (H, B) = 〈F (H, B)〉. The overbar denotes ensemble average or av-
erage over disorder Hamiltonians and the angular brackets, a running average defined by
c© EDP Sciences
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〈F (H, B)〉 = ∆−1
∫ B+∆

B−∆
dB F (H, B). The verification of both conditions is known as ergod-

icity in the mean square limit [8]. Such definition of ergodicity is consistent with its use in
statistical mechanics, and has been used recently in the context of random matrix theory also
involving energy averages [8].

Log-conductance fluctuations in the DIR, as opposed to the metallic phase, are not ergodic
in the sense of LS, as has been shown experimentally [1, 3, 9], i.e. the variance over samples
is larger than the variance over field. Such samples involve hopping lengths that are, at
most, 6 to 10 times the localization length. Convincing results of Orlov et al. [9] and Ladieu
et al. [3] have shown that a) field fluctuations do not decorrelate disorder fluctuations, and
b) field fluctuations do not change the identity of the hop. On the other hand, there is a
decorrelation field Bc, beyond which field fluctuations are independent [10, 11]. Surprisingly,
the fluctuations beyond this field scale do not correspond to that of a new sample as can be
derived from conclusion a).

On the theoretical side, the Nguyen, Spivak, and Shklovskii [5,6] model (NSS) has been suc-
cessful in predicting LS non-ergodicity as opposed to random matrix [12] and Anderson mod-
els [13] of the insulating regime. The crucial insight of the NSS model is that coherence is main-
tained within a Mott hopping length [6], where the conductance is a sum of coherent forward-
directed Feynman paths which interfere. The NSS model describes the quantum behavior of
the critical (bottleneck) hop in the Miller-Abrahams network [14]. The existence of many crit-
ical hops tends to average the macroscopic conductance, eliminating fluctuations [10]. Here,
we focus on the low-temperature regime where critical hops do not trivially self-average [15],
i.e. so the percolation correlation length ξp is such that ξp = ξ(T0/T )(ν+1)/(D+1) ∼ L, where
ν is the percolation correlation length exponent, D is the spatial dimension, and T0 a disorder
parameter.

In the present study, we propose to examine the fluctuations in the DIR in two dimensions,
as predicted by the asymptotic properties of the NSS model. We will first show that there
are two fluctuation regimes; one that responds to the absolute value of the magnetic field and
the other, only responding to field differences. The two regimes are analogous to those of
mesoscopic metals, but are yet undiscussed in the DIR. We then check the scaling behavior
of the field correlation function and compare these results with those of the mean-square
definition of ergodicity. The results reveal the fulfilment only of the condition on the first
moment. Within the replica moment method [16], we derive a relation between the log-
conductance correlation function, with field and temperature, and derive the replica cooperon
and diffuson.

In the two-dimensional NSS model, impurities are placed on the sites of a lattice of main
diagonal length t (the hopping length). We apply a magnetic field B, perpendicular to the
plane, changing only the phases of the electron paths. The overall tunneling amplitude is
computed by summing all forward-directed paths between two diagonally opposed points, each
contributing an appropriate quantum-mechanical complex weight given by the Hamiltonian

H =
∑

i

εia
†
iai +

∑
〈ij〉

Vija
†
iaj , (1)

where εi is the site energy, and Vij represents the nearest-neighbor couplings or transfer
terms. Within the NSS model, we choose site energies to be εi = ±W with equal probability.
Following refs. [6] and [16], the Green’s function between the initial and final site is given by

〈i|G(E)|f〉 =
(
V

W

)t

J(B, t); J(B, t) =
directed∑

Γ′

∏
iΓ′

ηiΓ′ e
iA, (2)
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Fig. 1 – Conductance fluctuations δ ln |J(B, t)|2 = ln |J(B, t)|2 − ln |J(0, t)|2 in the field for a single
sample in two dimensions for t = 62�, where the average behavior is visible above the fluctuations.
The inset shows the behavior of the average ln |J(B, t)|2 after 500 realizations.

where A is the magnetic vector potential, Γ′ represents all directed paths that go from i to
f through the lattice and ηi = sign (εi) = ±1. The function J(B, t) contains the interference
information including correlations due to crossing of paths, and the factor (V/W )t is the lead-
ing contribution to the exponential decay of the localized wave function. We use the transfer
matrix approach in order to compute J(B, t), exactly, for each realization of disorder [16].
The effect of a disordered arrangement of impurities within the directed path model has been
addressed in ref. [17], and is not relevant for the present study.

Figure 1 depicts typical fluctuations of the log-conductance for a fixed sample as a function
of the magnetic field. The figure clearly shows that the average log-conductance dominates
the fluctuations, i.e., the average behavior is visible for a single sample. The inset to fig. 1
shows the average log-conductance first increasing proportional to B, crossing over to a slower
growth as B1/2 dictated by the magnetic length [16, 18]. In the latter regime, while the log-
conductance tends to saturate, the fluctuations persist as in mesoscopic fluctuation theory
in metals [7]. Furthermore, we note that the average behavior is periodic in half the flux
quantum per �2 (only one half of a period is shown). This periodicity reveals an average
field coupling to 2B [6] which will be demonstrated theoretically below. In three dimensions,
the fluctuations are appreciably larger than the average behavior. Once more, persistent
fluctuations beyond the average conductance saturation field are observed. The existence of
such persistent fluctuations was first surmised by Sivan et al. [10, 19] and Zhao et al. [18].

On the metallic side, an analogous behavior has been described, and identifies two funda-
mental contributions to the field effect: The cooperon and the diffuson [7]. These contributions
can be distinguished by the way they enclose the magnetic flux; while the cooperon is sensi-
tive to 2B + ∆B, the diffuson only responds to field changes ∆B. In the insulating regime, a
cooperon-like mechanism associated with a positive magneto-conductance (MC) which satu-
rates, has already been observed as a general effect [1, 2, 4, 9]. On the other hand, as shown
in fig. 1, conductance fluctuations persist in the insulating regime to relatively large fields,
exposing a diffuson-like mechanism.

According to the condition of LS, ergodicity is assessed by comparing the magnitude of
the variance in the field (or energy) and sample-to-sample fluctuations. Figure 2 shows the
averages

Vard(ln |J(B, t)|2) = (ln |J(B, t)|2 − ln |J(B, t)|2)2 , (3)
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Fig. 2 – The figure depicts the variance as defined by eqs. (3) and (4). The sample-to-sample variance
(also shown averaged in the field) is initially larger than the variance in the field, but the latter
increases faster as a function of t and eventually intersects the former. The inset shows the field
correlation function C(B,∆B, t) = (∆ ln |J(B + ∆B, t)|2)(∆ ln |J(B, t)|2), where ∆ ln |J(B, t)|2 =
ln |J(B, t)|2 − ln |J(B, t)|2.

and
VarB(ln |J(B, t)|2) = 〈(ln |J(B, t)|2 − 〈ln |J(B, t)|2〉)2〉 . (4)

In the figure we show the variance in the field according to eq. (4), for fields above 0.01 flux
quantums per �2. Initially, VarB(ln |J(B, t)|2) is smaller than Vard(ln |J(0, t)|2) but the former
increases faster with t and eventually crosses the latter. Such crossing indicates that the
system can become “ergodic” in the LS sense, as the hopping length increases. Obviously,
this happens for t/ξ much larger than that expected for experiments, and in real systems it
only represents a tendency. A further problem with the comparison in the figure is that the
field behavior is non-stationary, so the difference between the variances depends on B. Koslov
et al. [9] avoided this issue (with experimental data) by further averaging Vard(ln |J(B, t)|2)
in the field. Figure 2 also shows the latter average, implying that fluctuations can become
ergodic, according to LS criterion, at smaller hopping lengths. The inset of fig. 2 depicts
the field correlation function (defined in the caption) showing a rapid exponential decay in
contrast with the algebraic decay in the metallic regime [7].

Using now the mean-square limit definition of ergodicity, we obtain fig. 3, showing that the
condition on the variance [ln |J(H, B, t)|2 − 〈ln |J(H, B, t)|2〉]2 → 0 is not met. The deviation
from zero of the latter increases linearly with the size of the hop as indicated in the figure.
On the other hand, the inset shows the asymptotic convergence, as averaging increases, to the
condition ln |J(H, B, t)|2 = 〈ln |J(H, B, t)|2〉. Thus, according to the mean-square criterion,
fluctuations in the localized regime meet only a weak ergodicity condition in the large-size
limit. We have determined that our conclusions are relatively independent of the running
average interval ∆ as long as (∆2/24)∂2(ln |J(B)|2)/∂B2 < ln |J(B)|2 [8].

The cooperon-diffuson contributions in the previous results can be accounted for within
the replica moment approach [16] as follows: The generator of the correlation function defined
in fig. 2 is the moment [J∗(B + ∆B)J(B + ∆B)J∗(B)J(B)]n, where each J(B) represents the
sums of all single paths between the initial and final sites. In order to have nonzero contribu-
tions after disorder average, the paths must pair up [16]. Neutral paths (field independent)
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Fig. 3 – Test of ergodicity in the mean-square limit as defined in the text. The figure depicts the
condition on the variance showing no convergence to zero with either number of realizations or hopping
length. The straight line is given as a guide to the eye. The inset shows the behavior of the condition
on the average which does conform to the ergodic requirement asymptotically. Labels a, b, and c
correspond to increasing number of realizations in disorder.

Fig. 4 – Replica cooperon and diffuson. Arrows corresponding to paths picking up phases of φ =∫
A · dl and φ + δφ =

∫
A + dA · dl are shown.

are formed by pairing J∗ and J at the same field (phase cancels). On the other hand, charged
paths (field sensible) are formed by pairing either J∗(B + ∆B) and J(B) or J∗(B + ∆B)
and J∗(B). In the absence of paired path intersections, self-interference kills charged paths
(their contribution decays exponentially fast). Nevertheless, if intersections are considered,
one can have path exchanges, for short distances, yielding a magnetic-field coupling which is
the source of MC [16].

Figure 4 shows the two possible field-sensitive diagrams at a paired path crossing: a) One
partner from J∗(B+∆B) pairs with one from J∗(B) while one from J(B+∆B) and one from
J(B) follow a different path. Such a combination encloses (2B + ∆B), and is therefore called
cooperon-like. b) One partner is taken from J∗(B+∆B) and the other from J(B) on the same
path, while one from J(B+∆B) and J∗(B) follow another. Such a combination encloses only
∆B and is called diffuson-like. Note that all previous cases satisfy overall neutrality so that
the contributions are real as expected. The contribution of the replica cooperon and diffuson
are the same at zero field and there is an additional contribution from the uncharged bubble.
Thus, when the cooperon is suppressed, one expects only a reduction of Vard(ln |J(0, t)|2) by
one third which is in agreement with our numerical results [16].

The replica moment argument, as applied in ref. [16], maps the n-th moment problem onto
the problem of 2n bosons with contact interactions. These interactions renormalize due to
the diagrams in fig. 4, making path interactions field dependent. The 2n boson system can be
solved using the Bethe ansatz [20] and has ground-state energy ε0 = ln 4n+ρ(B,∆B)n(n2−1).
On the other hand, the n-th moment can be expressed as a cumulant expansion, and identifying
orders of n we arrive at the expressions

Vard(ln |J(B+∆B)|2)+Vard(ln |J(B)|2)+C(B,∆B) = (ρcoop(2B+∆B)+ρdiff(∆B))t2/3. (5)

Here we have separated the path interaction in terms of the cooperon and diffuson contri-
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butions. Beyond the saturation field of the average log-conductance, the cooperon term on
the right-hand side saturates (the same for the variances on the left which depend on B) and
the correlation function only depends on ∆B. The field dependence of the right of eq. (5)
is ρcoop(B,∆B) + ρdiff(∆B) = cos( 2B+∆B

Bc
) + cos(∆B

Bc
) + 1. The replica results are valid

quantitatively for 1 + 1 dimensions, nevertheless, 2 + 1 dimensions also have a bound state,
although weaker, with a smaller positive MC. Therefore, our results apply qualitatively to
three-dimensional hops.

From the dependence of ρ(B,∆B), one can compute the full temperature dependence of
C(B,∆B), for small ∆B, by expanding the field dependence of the diffuson part such that
∆B < Bc = πch̄/(ξ1/2e t3/2) [6] (the NSS decorrelation field):

C(∆B) = ρ(B)ξ
(
T0
T

)2/9
(

1 − 1
2

(
∆Bξ3/2e

πh̄c

)2 (
T0
T

)4/9
)

for ∆B < Bc, (6)

where T0 = ∆/Nξ3, ∆ is the impurity band width and N the impurity concentration. In the
previous expression we have employed the temperature dependence of the ∆B = 0 fluctua-
tions [16] using Vard(ln |J(B, t)|2) = ρ(B)t2/3. The initial decay of the correlation function
(see fig. 2) starts out as a plateau and then decays faster, in agreement with cosine expansion
in eq. (6).

In order to experimentally observe persistent diffuson fluctuations, one has to explore a
range of parameters so that there is a saturation in the average behavior while the wave
function shrinkage [14] has not yet kicked in. This range can be defined by the condition
Bc < h̄/(eaBN1/3) = Borb, where aB is the Bohr radius. Borb is the scale for the orbital
shrinkage to be important [3], i.e., when the cyclotron radius becomes of the order of the
mean free path �. These conditions have been met in ref. [9] and [3]. Furthermore, according
to refs. [3, 9, 21], the magnetic field cannot induce geometric fluctuations due to changes in
the identity of the hop [22]. If the latter is true in two and three dimensions, the insulating
diffuson fluctuations should be seen experimentally.

Summarizing, we have assessed the field fluctuations and correlations of the logconductance
in the strongly localized regime within the NSS model. Persistent fluctuations at fields beyond
Bc are observed and explained using a replica diffuson and cooperon picture. We compared
the variances in sample-to-sample and field fluctuations and found that insulators become
increasingly ergodic, according to the Lee and Stone criterion, as the hopping length increases.
A more stringent definition of ergodicity, in the mean-square limit, shows that the NSS model
only meets a weak condition on the average while the variance criterion is not satisfied for any
hopping length. The full temperature dependence of the fluctuation correlation function, at
small ∆B, is obtained beyond the field scale at which the cooperon is suppressed. Analytical
treatment of fluctuation correlations should be possible using the percolation mean field [19]
and other uncorrelated path approaches [23,24]. Such results could shed light on the intrinsic
non-ergodic nature of the directed path model. We emphasize that the present study assesses
the asymptotic properties of the NSS model and the relation between the localization length
and the hopping length considered have not been realized experimentally. Finally, we must
point out that as temperature increases, other mechanisms which increase ergodicity (such
as returning paths) will arise that cannot be accounted for within the NSS model. These
contributions can only be studied with more general Green’s function approach.
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