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Abstract. We give a detailed picture of the mesoscopic conductance fluctuations in the deep insulating
regime (DIR) within the Nguyen, Spivak and Shklovskii model in the unitary and symplectic ensembles.
Slutski’s theorem is invoked to rigorously state the ergodic problem for conductance fluctuations in the
DIR, in contrast with previous studies. A weakly decaying behavior of the log-conductance correlation
function, even weaker when spin-orbit scatterers are included, is established on the relevant field scale of
the model. Such a slow decay implies that the stochastic process, defined by the fluctuations of the log-
conductance, is non-ergodic in the mean square sense in the ensembles with the reported symmetries. The
results can be interpreted in terms of the effective number of samples within the available magnetic scale.
Using the replica approach, we derive the strong localisation counterparts of the well known ‘cooperon’
and ‘diffuson’ which permit analyzing quantitatively the decaying behavior of the correlation function and
reveal its symmetry related properties in agreement with the numerical results.

PACS. 71.23.An Theories and models; localized states – 71.70.Ej Spin-orbit coupling, Zeeman and Stark
splitting, Jahn-Teller effect – 72.20.Ee Mobility edges; hopping transport – 74.40.+k Fluctuations (noise,
chaos, nonequilibrium superconductivity, localization, etc.)

1 Introduction

The nature of fluctuations in both the metallic state [1,2],
and in disordered insulators [3–5], have been a matter
of interest for both theoretical and experimental studies.
Whereas in the metallic regime the basic aspects of fluc-
tuations have been elucidated, in the regime of hopping
transport, the nature of fluctuations is still an open ques-
tion. The deep insulating regime (DIR) where transport
occurs via variable range hopping (VRH), is defined as
the regime where the localization length is the smallest
scale as compared to the elastic mean free path and hop-
ping lengths, i.e. ξ < � < t respectively [6]. Coherence
effects are possible in this regime because phase break-
ing events occur at the hopping length [7], which is larger
than �. Important signatures of quantum interference in
disordered insulators are the classic magneto-fingerprints,
reproducible fluctuations in the conductance with mag-
netic field, and a low field positive magneto-conductance.

An important property of mesoscopic conductance
fluctuations in the metallic phase is their ergodicity. At the
mesoscopic level, the sample size is less than thermal diffu-
sion length or the dephasing length, whichever is shorter,
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such that sample to sample fluctuations are visible and
the system does not self-average. In the metallic regime,
an ergodic criterion is verified whereby the magnetic field
(or energy) induces conductance fluctuations equivalent
to sample to sample fluctuations known as the Lee-Stone
criterion [1]. In contrast, experimental results show that
the DIR exhibits non-ergodicity in the log-conductance in
the Lee and Stone sense [4,5,7,8], i.e., the variance over
samples is larger than the variance over field. The lat-
ter has been shown only in the absence of spin-orbit (SO)
scattering since to our knowledge the ergodic criterion has
not been tested in the presence of such impurities. Care-
ful measurements of Fowler et al. [9], Ladieu et al. [4] and
Orlov et al. [5] have shown that a) field fluctuations do
not decorrelate disorder fluctuations, b) field fluctuations
do not change the identity of the hop, c) the field aver-
age of the variance over the samples is larger than the
sample average of the variance over the field and d) there
exists a decorrelation field Bc determined by the decay of
field correlation function, which defines an equivalent new
sample.

In this work we first address the problem of fluc-
tuations and the question of ergodicity in DIR within
the Nguyen, Shklovskii and Spivak (NSS) model [7]. The
question was first addressed numerically, within the NSS
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model, by its proponents who found violation of ergodic-
ity in the Lee and Stone sense. We undertake the study
of fluctuations from the point of view of the verification
of Slutski’s theorem concerning ergodicity. Such a theo-
rem first entails specifying the stationarity of the analyzed
fluctuations, a fact which has gone undiscussed in previ-
ous works, and can lead as we show here, to important
hopping length dependent effects. The interest in study-
ing ergodicity from this point of view is that it will clarify
why the system is non-ergodic. We will show this can be
understood in terms of the number of effective samples
within the physical magnetic field range.

The replica-cummulant approach developed in refer-
ence [10] is the only current analytical method that cor-
rectly assesses correlations of the NSS model. Scaling of
fluctuations have been computed from such a scheme [10]
but persistent (field strength independent) fluctuations
where only recently derived by Medina et al. [11]. Here
we extend the method to compute conductance correla-
tion functions within both the unitary and symplectic
ensembles. This approach yields new predictions to be
tested experimentally such a symmetry dependent decay
length in the magnetic field. Especially intriguing is the
nature of fluctuations in the symplectic ensemble, where
no cooperon correction exists, while the diffuson compo-
nent is non-zero.

Summarizing our paper, we first present Slutski’s theo-
rem with some detail in Section 2. In Section 3, we describe
the NSS model and define the random processes we ana-
lyze. In Section 4, we analyze the fluctuations predicted
by the NSS model, with and without SO scattering, using
the criteria described in Section 2 and rigorously verify,
numerically, the non-ergodic behavior of fluctuations. In
Section 5, within the replica-cummulant approach, we de-
rive the cooperon and diffuson analogs in strong localiza-
tion, which we use to quantitatively explain the decaying
behavior of the numerical conductance correlation func-
tion. Finally we conclude by discussing our results and
pointing out some experimental implications.

2 Ergodicity of transport fluctuations

Given a physical quantity F (H, B) depending on the
disordered Hamiltonian H and magnetic field B, we
denote by F (H, B) the sample to sample average,
or disorder average, and by 〈F (H, B)〉 =
∆B−1

∫ Bf

Bi
dB F (H, B), the field average for a given

sample or disorder realization. In order to be able to
estimate the sample average from the field average of a
given sample the following conditions must be satisfied:
a) limB→∞ σmss(B) = [F (H, B) − 〈F (H, B)〉]2 → 0
and b) F (H, B) = 〈F (H, B)〉. The verification of both
conditions is known as ergodicity in the mean square
sense (m.s.s.), or the random function F (H, B) is said to
be ergodic in the mean-square limit [12]. The condition
F (H, B) = 〈F (H, B)〉 expresses global stationarity,
which means that these averages are independent of B.

One can cast conditions a) and b) into a single state-
ment on the disorder fluctuations of the field average,
i.e. limB→∞ σmss(B) = limB→∞ Vard(〈F (H, B)〉) =
[〈F (H, B)〉 − 〈F (H, B)〉]2 → 0, where Vard denotes
the variance over disorder [13]. This property implies
that for one realization of disorder there are enough
‘equivalent samples’ within the magnetic scale, such that
the average in the field, does not depend, statistically, on
the particular realization.

One could also ask to make estimates of Vard(F (H, B))
from VarB(F (H, B)), (here VarB(F (H, B)) means the
variance over the field B of F (H, B)), or more generally,
to make an estimate of a function of the basic process
F (H, B), g(F (H, B)). The necessary and sufficient condi-
tions such that one can estimate g(F (H, B)) from one re-
alization of disorder with the field average 〈g(F (H, B))〉, is
dictated by slutsky’s theorem. One can write σmss(Bf ) =
limBf→∞ 2

∆B2

∫ Bf

Bi
dB(Bf − B)C( g(F (H, B))), with

C(g(F (H, B, ∆B))) = ∆g(F (H, B + ∆B))∆g(F (H, B)),
(1)

where C(g(F (H, B, ∆B))) is the correlation func-
tion for g(F (H, B, ∆B)) and ∆g(F (H, B + ∆B)) =
g(F (H, B + ∆B)) − g(F (H, B + ∆B)) . One can easily
realize that a strong decaying behavior of the correlation
function with correlation field Bc � Bf will be a sufficient
condition for ergodicity in the m.s.s., i.e. σmss(Bf ) → 0.
In fact this is also a necessary condition.

For the above theorem to hold, stationarity must be as-
sumed. Stationarity implies that F (H, B) does not depend
on B and C[g(F (H, B, ∆B))] depends only on ∆B [14].
In this work we are interested in testing the ergodicity in
two cases: g(X) = X for the average and g(X) = X2−X

2

for the variance. The first case corresponds to the usual
meaning of ergodicity in statistical mechanics. The second
case, usually named the Lee-Stone criterion, refers to the
equivalence of sample to sample fluctuations and magnetic
field fluctuations [1,12,15].

3 The NSS model

We now examine the fluctuations in the DIR within the
Nguyen et al. [6,7] model (NSS). The NSS model’s cru-
cial insight is that coherence is maintained within a Mott
hopping length, where the conductance is a sum of coher-
ent forward directed Feynman paths which interfere which
each other. The NSS model describes the quantum behav-
ior of the critical (bottleneck) hop in the Miller-Abrahams
network [16]. The existence of many randomly oriented
critical hops tend to average the macroscopic conductance,
eliminating fluctuations [9]. Here, we focus on the low tem-
perature regime where critical hops do not trivially self
average [8,17], i.e., the percolation correlation length ξp

is such that ξp = ξ(T0/T )(ν+1)/(D+1) ∼ L, where ν is the
percolation correlation length exponent, D is the spatial
dimension and T0 a disorder parameter. This is the meso-
scopic regime [8].
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In the two dimensional NSS model, impurities are
placed on the sites of a lattice of main diagonal length t
(the hopping length, t = ξ(T0/T )1/(D+1), Mott’s law) and
lattice spacing �. We apply a magnetic field B, perpen-
dicular to the plane, changing only the phases of the elec-
tron paths. The overall tunneling amplitude is computed
by summing all forward directed paths between two diag-
onally opposed points, each contributing an appropriate
quantum mechanical complex 2 × 2 matrix weight given
by the Hamiltonian

H =
∑

i

εia
†
i,σai,σ +

∑
〈ij〉σ,σ′

Vij,σσ′a†
i,σaj,σ′ , (2)

where εi is the site energy, and Vij,σ,σ′ represents the near-
est neighbor couplings or transfer terms which includes a
randomly chosen SU(2) matrix describing a spin rotation
due to SO scattering. Within the NSS model, we choose
site energies to be εi = ±W with equal probability [7,10].
Without SO, or unitary ensemble, the coupling terms are
diagonal in spin space Vij,σσ′ = Vij , and the Green’s func-
tion between the initial and final site is given by

〈i|G(E)|f〉 =
(

V

W

)t

J(B, t);

J(B, t) =
directed∑

Γ ′

∏
iΓ ′

ηiΓ ′ e
iφi

Γ ′ , (3)

where φiΓ ′ is the phase gained through path iΓ ′ due to the
magnetic vector potential, and Γ ′ labels all directed paths
that go from i to f through the lattice and ηi = sign (εi) =
±1 [18]. In the presence of SO scattering, or symplectic
ensemble, the Green’s function is the 2 × 2 matrix

J(B, t) =
directed∑

Γ ′

∏
iΓ ′

ηiΓ ′ UiΓ ′ e
iφi

Γ ′ . (4)

The Green’s function consist of a sum of terms, one per
path, each being a product of random numbers, random
SU(2) matrices U , and a deterministic disorder indepen-
dent phase factor from the magnetic vector potential [19].
The complex function J(B, t) (a complex matrix function
in the presence of SO) contains the interference informa-
tion including correlations due to crossing of paths, and
the factor (V/W )t is the leading contribution to the ex-
ponential decay of the localized wavefunction. We use the
transfer matrix approach in order to compute J(B, t), ex-
actly, for each realization of disorder [10]. The random
processes in question represent the log-conductance; they
are F (H, B) = ln(J†(B, t)J(B, t)) in the unitary case
and F (H, B) = ln(I(B, t)), in the symplectic case, where
I(B, t) = (1/2)Tr(J†(B, t)J(B, t)) [10]. In this work we
compute the magnetic field B or changes in magnetic field
∆B in flux units φ0/�2, where φ0 is the flux quantum.

(a)

(b)

Fig. 1. Conductance fluctuations of a) ln|J(B, t)|2 (unitary)
and b) ln|I(B, t)| (symplectic) as a function of sample number
and magnetic field, for two dimensional systems of hopping
length t = 15. Field fluctuations do not decorrelate sample
fluctuations and are evidently smaller. Fluctuations for the
symplectic ensemble are notably slower than in the unitary
ensemble as discussed in the text.

4 Fluctuations and ergodicity

4.1 Unitary ensemble

Figure 1a shows typical fluctuations of the log-
conductance as a function of the sample number and
the magnetic field in two dimensions. The figure clearly
shows a mean increase of ln |J(B, t)|2 that dominates
the fluctuations, i.e., the mean behavior is visible for a
single sample. It has been shown that ln |J(B, t)|2 first
increases proportional to B2, crossing over to a slower
growth as B1/2 dictated by the magnetic length ∆B <
Bc = πc�/(ξ1/2e t3/2) [10,20,21], therefore the process is
not stationary in the field. However, in the higher field
regime of slow growth, one finds a field above which the
process can be considered as quasi-stationary, for all prac-
tical purposes, in the same fashion as has been consid-
ered in the metallic regime. In this range, while the log-
conductance tends to saturate, the fluctuations persist as
in mesoscopic fluctuation theory of metals [1]. Further-
more, we note that the average behavior is periodic in half
the flux quantum φo per �2. This periodicity reveals an av-
erage field coupling to 2B [7] which has been demonstrated
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theoretically [11]. In three dimensions, the fluctuations are
appreciably larger than the average behavior, and persis-
tent fluctuations beyond the average conductance satura-
tion field are also observed. The existence of such persis-
tent fluctuations were first surmised by Sivan et al. [9,22]
and Zhao et al. [20]. One very visible feature of Figure 1a,
is the fact that field fluctuations do not decorrelate the
disorder fluctuations, in agreement with the experimental
findings of reference [5]. This suggests, non-ergodic behav-
ior.

Following the concepts of section two, we analyze the
ergodicity of the log-conductance fluctuations more care-
fully. To achieve this we have to check two issues: first,
whether stationarity is reasonably fulfilled, and second to
verify the ergodicity condition and the decaying behavior
of the correlation function. Figure 2a shows the quantities
Vard(〈F (H, B)〉) (circles) and [F (H, B) − 〈F (H, B)〉]2
(diamonds) where F (H, B) = ln |J(B, t)|2. The field av-
eraging interval is [Bi, Bf ]. In this figure, as the field Bi

is increased from zero to 0.1 in [φ0/�2] units, the com-
puted variance is reduced (diamonds) until a saturation
initial field is achieved Bi = Bs. Vard(〈F (H, B)〉) (cir-
cles) is computed at Bs. The overlap between both av-
erages occurs sooner for smaller hopping length t. Fig-
ure 2a contains information that is twofold: First we
confirm effective stationarity above field Bs ∼ 0.1φ0/�2

i.e. 〈F (H, B)〉) = F (H, B), and second, that evidently
Vard(〈F (H, B)〉) does not converge to zero contrary to the
ergodicity criterion in the m.s.s. The field above which the
process can be considered quasi-stationary, Bs, increases
with the hopping length. This feature is of importance for
calculating other relevant quantities, as any question on
ergodicity presumes at least quasi-stationarity.

To further substantiate this result, we compute the
correlation function. Figure 3 shows the normalized cor-
relation function for both unitary and symplectic cases,
t = 30 and Bi = Bs. One sees a weakly decaying behavior
on the physical field scale [1 φ0/�2], with a characteristic
decay field Bc defined as the field at which the correlation
decreases to half its initial value. Note the initial down-
ward curvature of the correlation, which then turns to an
upward curvature whose origin will become clear within
replica theory.

The basic finding is then that, the slow decaying be-
havior of the correlation function precludes the construc-
tion of enough ‘effective samples’ (number of ∆B = Bc

ranges within the physical field scale) from the field fluc-
tuations and therefore non-ergodic behavior is established.
To illustrate this point, we depart from σmss(Bf ) =

2
(Bf−Bi)2

∫ Bf

Bi
dB[(Bf − B)C(F (H, B))]; in order to have

enough effective samples in the field scale within the valid-
ity of the model (Bf ≤ 1φ0/�2), there should be a decor-
relation field Bc � 1, such that a large number of samples
can be defined. This would imply σmss(Bf ) ≈ 0, clearly
not the case from our results. On the other hand, it follows
that the condition for ergodicity of the variance, which in
general requires a stronger decaying behavior of the cor-
relation function for process F (H, B), is not fulfilled [12].
Therefore, one should expect that the Lee and Stone crite-

(a)

(b)

Fig. 2. Quasi stationary behavior in the unitary and sym-
plectic ensembles. a) As the field Bi is increased, the average
indicated (top, diamonds) converge to the dotted curve, imply-
ing stationary behavior and an increasing value of the average
with the hopping length (non-ergodicity). The limiting Bs is
0.1φ0/�2. b) The symplectic case where convergence as a func-
tion of Bi is almost immediate, indicating stationarity.

Fig. 3. Normalized correlations functions C(B, ∆B, t) for the
unitary and symplectic ensembles as a function of ∆B for a
given value of Bi = 0.1 (no further changes for higher Bi)
and t = 30. The correlation functions initially decay with a
downward curvature described by replica theory. Note that the
decay for the unitary case is almost exactly twice as fast as in
the symplectic case.
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(a)

(b)

Fig. 4. The figure depicts the variance as defined by equa-
tions 5 and 6 as a function of t for a) the unitary ensemble and
b) the symplectic ensemble. The effect of changing the values
of Bi from 0 to 0.1 (indicated by the hatched regions) is clearly
seen until saturation is attained at Bi = Bs. For the unitary
case, Bi below the saturation field can suggest apparently er-
godic ranges for large enough hopping lengths. Such fictitious
crossing does not arise in the symplectic ensemble where non-
ergodicity in the Lee and Stone sense is more marked.

rion of ergodicity on the relative magnitude of the field and
sample fluctuations is not realized. We have compared the
magnitude of the variance in field and sample to sample
fluctuations. The idea of further averaging over disorder
and over the field, is the same as in statistical mechanics
using different initial conditions to improve the statistics.
Figure 4a shows the averages

〈Vard(ln |J(B, t|)〉 =
〈
(ln |J(B, t| − ln |J(B, t|)2

〉
, (5)

VarB(ln |J(B, t|) = 〈(ln |J(B, t)| − 〈ln |J(B, t)|〉)2〉. (6)

The figure depicts the dependencies of expressions in
equation (5) (squares and horizontal hatch) and 6 (di-

amonds and vertical hatch) on the hopping length and
increasing Bi. Note that for Bi ≤ Bs ergodicity is appar-
ently achieved (in the Lee and Stone sense) as the size
increases. Nevertheless, if the variances are computed cor-
rectly (Bi ≥ Bs) the absence of ergodicity is established
for all hopping lengths studied. We find the characteris-
tic Bi dependence shown in Figure 2 shows up as a cross-
ing of both types of averages. There is again a clear ten-
dency to saturate as Bi increases whereas the difference
of the saturated averages widens with increasing t.

4.2 Symplectic ensemble: SO scattering

When SO scattering is present, the Hamiltonian exhibits
symplectic symmetry. In two and three dimensions the
fluctuations are markedly stronger than the average be-
havior. This fact is due to the absence of exponential cor-
rections to the magnetoconductance in the symplectic en-
semble for the NSS model [10]. The fluctuations are also
less sensitive to field changes in stark contrast with the
sharp changes in the absence of SO. This peculiarity will
be understood in the next section. As in the unitary case,
Figure 1b shows that field fluctuations do not decorrelate
the disorder fluctuations. This finding has yet to be tested
experimentally.

In the symplectic ensemble we are interested in
F (H, B) = ln |I(B, t)|2. Figure 2b shows immediate ef-
fective stationarity of the process ln(I(B, t)) essentially
independent of Bi and t. Vard(〈F (H, B)〉) does not tend
to zero with increasing Bf ; on the contrary, it increases
with a power of t [11], an indicator of non-ergodic behavior
in the m.s.s. and there is no self-averaging as one increases
the hopping length t (see Kramer and Mackinnon [2]). Fig-
ure 3 shows the correlation function for Bi ≥ Bs whose
decay is weaker than in the unitary case, with a more rapid
decay as t increases. Note that the correlation function for
the symplectic case decays to half its height in twice the
range as compared to the unitary case. This is a symmetry
related effect borne out within the replica approach in the
next section.

In view of the relative independence of Vard on Bi in
the symplectic case, non-ergodic behavior is pronounced
no matter the range of fields considered. Thus, from the
Lee and Stone criterion, we also find an independence of
Bi (see Fig. 4b), with an increasing non-ergodicity with
the hopping length. Such clearcut results should be ob-
served in experimental samples.

5 Correlation function: the cooperon
and diffuson

In this section we derive the cooperon and diffuson in the
context of strong localization. These objects are used to
explain, semi-quantitatively, the non-ergodic behavior in
the mean square sense and the relative magnitude of the
field and sample fluctuations found in experiments. For
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this purpose, the following relation is straightforwardly
derived

Vard[F (B + ∆B, t) + F (B, t)] = Vard[F (B + ∆B, t)]

+ Vard[F (B, t)] + 2C [F (B, ∆B, t)] . (7)

This relation is valid for both processes ln |J(B, t)|2 and
ln I(B). For convenience, the composite process inside
the brackets (F (B, t)) of equation (7) is denoted by
P (B, ∆B, t) = ln |J(B + ∆B)|2 + ln |J(B)|2, and with
SO by Pspinor(B, ∆B, t) = ln I(B + ∆B) + ln I(B),
such that the left hand side of equation (7) is in each
case Vard[P (B, ∆B, t)] and Vard[Pspinor(B, ∆B, t)], re-
spectively.

In previous work it has been shown that in the NSS
model Vard(ln |J(B, t)|2) is reduced with the field con-
comitantly with an increase in the conductance [10].
On the metallic side, an analogous behavior has been
described which identifies two fundamental contribu-
tions to the field effect: the cooperon and the dif-
fuson [1,2]. These contributions can be distinguished
by the way they enclose the magnetic flux; while the
cooperon is sensitive to (2B + ∆B), the diffuson only
responds to field changes ∆B. In the insulating regime,
a mechanism similar to the cooperon, which saturates,
is here associated with a positive magneto-conductance
(MC). The latter, has been observed as a general ef-
fect [2,5,8,23,24]. A semi quantitative explanation for
the behavior of the functions Vard[P (B, ∆B, t)] and
Vard[Pspinor(B, ∆B, t)] can be found with the help of
the cooperon and diffuson analogs. To achieve this goal,
we consider the moments of process of P (B, ∆B, t) and
Pspinor(B, ∆B, t). For the unitary case they can be gen-
erated by [J∗(B + ∆B)J(B + ∆B)J∗(B)J(B)]n. Recall,
from equations (3) and (4), that this product can be vi-
sualized as a set of 4n paths [10], each one defined by the
respective term in the product.

In order to have nonzero contributions after disor-
der average, the paths must pair up, as a consequence
of the chosen distribution of the energies [25]. Neutral
paths (field independent) are formed by pairing J∗ and
J at the same field (phase cancels). On the other hand,
charged paths (field sensible) are formed by pairing either
J∗(B + ∆B) and J(B) or J∗(B + ∆B) and J∗(B). In
the absence of paired path intersections, self interference
kills charged paths (their contribution decays exponen-
tially fast). Nevertheless, if intersections are considered,
one can have path exchanges for short distances, yield-
ing a magnetic field coupling which is the source of the
initial decay of the correlation function. There are three
possible diagrams at a paired path crossing, the two that
are field coupling, are depicted in Figure 5. Without SO,
the spin indexes can be ignored, and one obtains [11]: a)
one partner from J∗(B +∆B) pairs with one from J∗(B),
while one from J(B + ∆B) and one from J(B) follow a
different path. Such a combination encloses (2B + ∆B)
and is therefore called cooperon-like. b) One partner is
taken from J∗(B + ∆B) and the other from J(B) on the
same path, while one J(B + ∆B) and J∗(B) follow an-

Fig. 5. The cooperon and diffuson diagrams in the unitary
case discussed in the text. The cooperon is responsible for ex-
ponential corrections to the MC but saturates rapidly in the
field. The diffuson is responsible for persistent field fluctuations
independent of the magnitude of the field.

other. Such a combination encloses only ∆B and is called
diffuson-like. Finally, one can have combination c) where
one partner comes from J∗(B + ∆B) and the other from
J(B + ∆B), leaving J∗(B) and J(B) to pair up. The lat-
ter combination is called uncharged and is immune to the
field. Note that all previous cases satisfy overall neutrality
so that the contributions are real as expected. The contri-
bution of the replica cooperon and diffuson are the same
at zero field and there is an additional contribution from
the uncharged diagram. Further progress is achieved using
the replica cummulant method.

The replica-cummulant argument [25], maps the 4nth
moment problem onto the problem of 2n bosons with con-
tact interactions. These interactions renormalise due to
the diagrams above, making path intersections field de-
pendent [10]. The 2n boson system with contact inter-
actions according to the Hamiltonian H2n [25] can be
solved using the Bethe ansatz and has ground state en-
ergy ε02n = ln 4n + ρ(B, ∆B)2n(4n2 − 1), where ρ(B, ∆B)
is defined by

[J∗(B + ∆B)J(B + ∆B)J∗(B)J(B)]n =

Tr [exp(−H2nt] ∼ exp(−ε02nt)

= A(B, ∆B) exp(ln 4n + ρ(B, ∆B)2n(4n2 − 1)t), (8)

valid at fixed n asymptotically for t → ∞. On the
other hand, the 4nth moment can be expressed as a
cummulant expansion valid at fixed t asymptotically
for n → 0, [J∗(B + ∆B)J(B + ∆B)J∗(B)J(B)]n =
exp

∑
i

(2n)i

i! Ci[P (B, ∆B, t)], where Ci[P (B, ∆B, t)] are
the cummulants of process P . The subtleties concerning
both limits have been discussed by Kardar [25]. Equating
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Fig. 6. The diffuson and the cooperon in the symplectic case.
Here spin indexes are involved with the rules discussed in the
text. The cooperon diagram vanishes indicating no exponential
corrections to the MC. Diffuson contributions survive giving
persistent conductance fluctuations in the field.

powers of n in the expressions above we obtain

Vard[P (B, ∆B, t)] = [ρcoop(2B + ∆B) + ρdiff (∆B)] t2/3

+ lnA(B, ∆B). (9)

Here ρ(B, ∆B) = ρcoop(2B + ∆B) + ρdiff (∆B), were
we have separated the path interaction in terms of the
cooperon and diffuson contributions. The t2/3 dependence
has been previously checked numerically as the asymp-
totic behavior [10]. Beyond the saturation field of the aver-
age log-conductance, the cooperon term on the right hand
side is a constant (the same for the variance on the right
of equation (7) which depends on B) and the correlation
function only depends on ∆B.

In the case of SO, it can be shown[10], that the only
non-zero paired averages are UαβU∗

αβ = 1
2 , U↑↑U∗

↓↓ = 1
2 ,

U↑↓U∗
↓↑ = − 1

2 , thus SO averaging brings a factor of (1
2 )2

and forces the neutral paths to have parallel spins, while
the spin of the two partners of charged paths must be
antiparallel (see Fig. 6). As a consequence, one finds
the cooperon diagrams cancel in pairs as concluded for
the case of the magneto-conductance [10], and no expo-
nential corrections to the conductance occur due to the
cooperon. On the other hand, the diffuson is non vanish-
ing and there are two possible combinations for incoming
spin indices (all up and all down), such that in this case
Vard[Pspinor(B, ∆B, t)] = ρspinor

diff (∆B)t2/3+ln A(B, ∆B).
This nice result explains why there are large fluctuations
in the presence of SO, even if there are no exponential
corrections to the magneto-conductance. For large ∆B
and t, one finds the ratio of the variances approaches

ρdiff (∆B))/ρspinor
diff (∆B) = 2 (= 1/(2× (1/2)2)), in agree-

ment with the numerical results.
From equation (7) one obtains

C(B, ∆B, t) =
1
2
[(ρcoop(2B + ∆B) + ρdiff (∆B))

− (ρmc(B + ∆B) + ρmc(B))]t2/3 + S(B, ∆B), (10)

where S(B, ∆B) = (1/2) lnA(B, ∆B)/(ln A
′
(B +

∆B) ln A
′
(∆B)), are logarithmic corrections from the

prefactors. ρmc(B) defines the magneto-conductance
from the analogous expressions, [J∗(B)J(B)]n =
exp{∑ ni

i! Ci[lnJ∗(B)J(B)]} = A(n, B, ∆B) exp(n ln 2 +
ρmc(B)n(n2 − 1)t) [10].

From equation (10), one can gain qualitative and quan-
titative understanding of the decaying behavior of the cor-
relation function for small ∆B. With the explicit field de-
pendence of the cooperon and diffuson given by

ρfluctuations = ρcoop + ρdiff

= (2 cos((2B + ∆B)/Bc) + 2 cos(∆B/Bc) + 1)ρ(B = 0),
(11)

and

ρmc(B) = [(2 cos(B/Bc)) + 1]ρ(B = 0), (12)

one obtains after the cooperon contribution has died out
(B > Bs)

C(B, ∆B, t) = [2 cos(∆B/Bc) − 1]Vard[F (0, t)]t2/3.
(13)

Here, we have ignored the logarithmic corrections from
equation (10). For B = 0 and ∆B = 0 one has C(B =
0, ∆B = 0, t) = Vard[F (0, t)] = Vard[F (0, t)] = ρ(B =
0, ∆B = 0)t2/3, in accordance with equation (7). For
∆B < Bc one finds

C(∆B, t) =
[
1 − 2(∆B/Bc)2

]
Vard[F (0, t)]t2/3. (14)

This behavior is qualitatively borne out in Figure 3, where
one observes first a downward curvature for small ∆B. For
a given ∆B one observes a faster decay with increasing t
in accordance with Bc = πc�/(ξ3/2et3/2)[6] (not shown
in the figure). This is also evident in the symplectic case
where one has

Cspinor(B, ∆B, t) =
1
2

[
(ρspinor

diff (∆B)
]
t2/3, (15)

since ρspinor
mc vanishes [10] for the same reason that there

is no cooperon contribution, so

Cspinor(B, ∆B, t) =
1
2
(cos(∆B/Bc))ρ(B = 0)t2/3. (16)

In the ∆B < Bc limit we obtain

Cspinor(B, ∆B, t) = (1 − (∆B/Bc)2)ρ(B = 0)t2/3. (17)



108 The European Physical Journal B

As found in Figure 3, the correlation function for the sym-
plectic case shows a slower decrease, approximately by
a factor of two, of its correlation function as predicted
by the expressions above. Interestingly this a reflection
of the symmetry. This fact also makes for an enhanced
non-ergodicity for the symplectic case, because there are
even less effective samples within the available field range.
Finally, the full form of the correlation function will nece-
sarilly need to account for a distribution of intersection
diagram areas. Therefore, intersections with smaller and
less probable areas determine the long ∆B behavior of the
correlation function. Such a complete description has yet
to be formulated.

6 Discussion and conclusions

Summarizing the results of this work, we have found that
the log-conductance in the DIR of mesoscopic samples is
non-ergodic in the mean square sense, and the fluctuations
of the log-conductance are non-ergodic in the sense that
sample to sample fluctuations are larger than magnetic
field fluctuations. We have carefully assessed the impor-
tance of stationarity of fluctuations in determining ergod-
icity. In the absence of SO scattering, due to the exponen-
tial corrections to the magnetoconductance [10,11], only
quasi stationarity can be achieved for fields larger than
Bs(t), whereas with SO, the small magneto-conductance
and its rapid saturation [10,21], render Bs(t) small, so
that the process in the symplectic case can be regarded
as effectively stationary independent of t. The field Bs(t)
is obtained numerically by varying Bi until one observes
that σmss(Bf ) ≈ Vard(〈F (H, B)〉). It is only when the
averaging interval is taken as [Bs(t), Bf ], i.e., when quasi-
stationarity is achieved, that the proper comparison of the
variance can be made. Spurious results can arise, as shown
in Figure 4, if stationarity is not well established before
applying criteria such as Lee-Stone.

A definitive trademark of non-ergodicity is the finding
that σmss does not vanish as the hopping length is in-
creased. In fact, this quantity increases with the hopping
length for both the unitary and the symplectic ensemble.
Such a conclusion is also supported by the computation of
the correlation function, which additionally offers a phys-
ical explanation for non-ergodicity: The decay of the cor-
relations in ∆B is such that only a few correlations fields
occur within φ0/�2. As a new effective sample is defined by
such a correlation range, only a few of them are defined.
Thus field fluctuations are mostly correlated fluctuations.

The experiments of reference [5] were done in the ab-
sence of SO. Therefore, in order to make a rigorous com-
parison with our results one has to check the experimen-
tally considered interval [Bs(t), Bf ]. According to Fig-
ure 4a, if one extrapolates data to hopping distances of the
order of t = 10ξ, the incidence of the averaged field range
can reach 20% (width of initial field range indicated) of the
absolute value of the fluctuations. On the other hand, the
scaling of the disorder fluctuations with the hopp length t,
as shown in Figure 4, agrees qualitatively with the experi-
mental results obtained by Orlov et al. [26] i.e. the fluctu-

ations first increase rapidly (Var(ln|J |) faster than t) and
then settles on almost linear behavior (see comments in
Ref. [2] of Kramer and McKinnon). It should be pointed
out that the variance over disorder should converge to t2/3

for large enough t [10]. It is interesting to observe that
both the Vard and VarB appear to have the same func-
tional form when the appropriate field interval is consid-
ered. In the case with SO, experimental studies of fluctua-
tions are lacking. To our knowledge, the only work where
field fluctuations in the DIR have been reported in sam-
ples with SO is the work of Hernandez and Sanquer [27].
Our predictions should give a clear qualitative way of dif-
ferentiating the unitary and symplectic ensembles in the
experimental data.

From the theoretical point of view, we have derived two
important objects: the cooperon and the diffuson which
are the weak localization counterparts in the DIR (involv-
ing only directed paths). They allow us to explain some
features of the correlation function like the qualitative be-
havior for small ∆B, and numerically, the weakly decaying
behavior on the scale (φ0/�2), that according to the Slut-
ski’s theorem, is responsible for the non-ergodic behavior
as we have found. One can also account for the slower de-
cay (by a factor of two) of the correlation functions in the
symplectic ensemble as a symmetry feature.

In order to experimentally observe persistent diffu-
son fluctuations, one has to explore a range of param-
eters so that there is a saturation in the average be-
havior while the wave function shrinkage [16] is still a
negligible effect. This range can be defined by the con-
dition Bc < �/(eaBN1/3) = Borb, where aB is the Bohr
radius. Borb is the scale for the orbital shrinkage to be
important [4], i.e., when the cyclotron radius becomes of
the order of the mean free path �. These conditions have
been met in references [4] and [5]. Furthermore, accord-
ing to references [3–5] the magnetic field cannot induce
geometric fluctuations due to changes in the identity of
the hop [28]. This finding holds in both two and three di-
mensions, and therefore we expect the insulating cooperon
and diffuson fluctuations should be seen experimentally
also in three dimensions. In experiments, one should be
aware about the condition of mesoscopic sample, discussed
in Section 3. Otherwise, trivial self-averaging of spatially
different oriented hops can wash out the possibility to ob-
serve fluctuations.

There will be a non-ergodic to ergodic crossover when
one relaxes the condition of DIR with � � ξ < t such that
there are many impurities within ξ. In this case there will
be a diffusing behavior within the length scale ξ so that
two overlapping random processes are at work, one ergodic
for the diffusing scale ξ and the other non-ergodic for the
larger scale t [15]. Finally, we want to stress that the fun-
damental point of considering correlations in the random
processes F (H, t) due to the path intersections cannot be
relaxed. This approach permitted us to use the strength of
the replica theory, leading to semi-quantitative and quali-
tative predictions. Theories like the independent path ap-
proximation, where such crossings are neglected, miss the
very crucial description of fluctuations completely.
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